A ‘Manage’ ed approach for 4R nutrient stewardship on drained land

Crops: Canola Corn for grain Corn for silage Cotton Hay Potato Rice Ryegrass Sorghum Soybeans Sugar beets Sugarcane Winter wheat Wheat
4R Practices: Metadata Project

A “MANAGE”ed Approach to 4R Nutrient Stewardship on Drained Land

Lead Researcher:

Dr. Laura Christianson

Assistant Professor

University of Illinois

Collaborating scientists and universities

  • Dr. R. Daren Harmel, USDA-ARS

Start Date: 2014

End Date: 2015

Matching Funds

  • Texas State Soil and Water Conservation Resource Board

Project Summary

As agriculture in the 21st century is faced with increasing pressure to reduce negative environmental impacts while continuing to efficiently produce food, fiber, and fuel, it becomes ever more important to reflect upon more than half a century of drainage water quality research to identify future paths towards increased sustainability. This work provided a quantitative review of the water quality and crop yield impacts of artificially drained agronomic systems across North America by compiling data from drainage nutrient studies into the “Measured Annual Nutrient loads from Agricultural Environments” (MANAGE) database. Of the nearly 400 studies reviewed, 91 individual journal publications and 1279 site-years were included in the new MANAGE Drain Load table with data from 1961 to 2012.

Project Goals:

  • The MANAGE Drain Load database: Review and compilation of more than fifty years of drainage nutrient studies.
  • 4Rs water quality impacts: A review and synthesis of forty years of drainage nitrogen losses.
  • A quantitative review and synthesis of fifty years of drainage phosphorus losses.

Project Results:

  • Increasing nitrogen application rates both improved crop yields and increased dissolved nitrogen loads in drainage. “Fine-tuning” these rates is clearly important from economic and environmental standpoints, but it would be short-sighted and unrealistic to focus solely on this practice.
  • The order of magnitude difference between agronomic phosphorus application rates and phosphorus loadings that can cause ecological damage presents a serious environmental challenge, especially compared to nitrogen. Across the literature, generally less than 2% of applied phosphorus was lost in drainage in a given site year.
  • Practices such as applying at planting or side-dressing had lowest median nitrogen losses (not significant).
  • Adherence to 4Rs strategies is vital regardless of the nutrient source, and accurate implementation of the 4Rs approach will require site-specific knowledge.

Annual Reports

2015

Publications

Enhanced Efficiency Fertilizer in Corn Systems in the Midwest

Crops: Corn for grain Corn for silage
4R Practices: Metadata Project

Meta-analysis of Enhanced Efficiency Fertilizers in Corn Systems in the Midwest

Lead Researcher:

Dr. Rachel Cook

Assistant Professor

North Carolina State University

Start Date: 2014

End Date: 2015

Matching Funds

  • Dow AgroSciences

Project Summary

The 4R approach to nutrient stewardship has helped develop a better context for driving best management practices in production agriculture. As the agricultural community becomes more involved in exploring the three aspects of sustainability, including the economic, social, and environmental triple bottom line, the 4Rs (right source, right rate, right time, and right place) provide a framework for better management of fertilizer applications.

The exceedingly large number of possible combinations of source, rate, time, and place, even within one cropping system, can make it difficult to compare results from studies located in different regions, with different climate, soils, and accepted management practices. To prevent needless duplication of study parameters and suggest future study directions, the soil fertility and fertilizer community needs to systematically compile what we know in order to move forward in the most efficient manner possible.

Project Goals:

  • Compile a database that will characterize environmental variables (latitude and longitude, precipitation, soil texture, soil organic matter, and plot size).
  • Meta-analysis will re-evaluate the current literature on nitrapyrin, and expand the analysis to include other nitrification inhibitors, urease inhibitors, and controlled release fertilizers will create a more useful and broader-scoped analysis of the environmental and agronomic benefits of these management practices in Midwestern corn production.

Project Results:

  • Application timing and nitrogen rate had a greater effect than nitrogen source with enhanced efficiency properties for management and environmental factors for this specific meta-analysis.
  • A need for an additional assessment that coverages greater regions and specific systems that are susceptible to losses is clear.
  • Nitrate leaching and water-quality information reported with measures of variability are the biggest information gap at this time for both tile-drained and non-tile-drained systems.

Annual Reports

2014

2015